Engineering Casimir interactions with metamaterials

Diego A. R. Dalvit
Theoretical Division
Los Alamos National Laboratory

Collaborators

LANL

Peter Milonni

Felipe da Rosa

Francesco Intravaia

Antoniette Taylor

John O'Hara

Sandia

Paul Davids

Igal Brener

Maarten de Boer

Stephen Howell

MIT

Steven Johnson

Alejandro Rodriguez

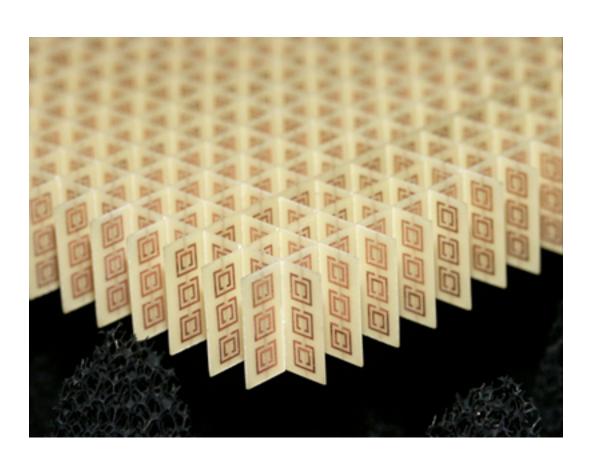
Alex McCauley

Outline of this Talk

- Casimir forces and metamaterials
 - What is a metamaterial?
 - Proposals for Casimir force manipulation with metamaterials
 - Is Casimir repulsion possible?

- Some very new results (paper under review)
 - Stay till the end....

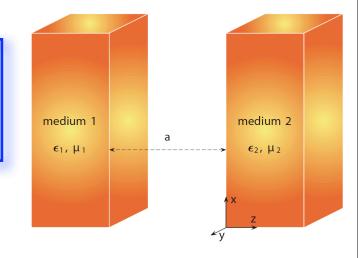
Metamaterials and Casimir



Effects of materials

The Lifshitz formula: Lifshitz (1956)

$$\frac{F}{A} = 2\hbar \operatorname{Im} \int_0^\infty \frac{d\omega}{2\pi} \int \frac{d^2 \mathbf{k}_{\parallel}}{(2\pi)^2} K_3 \operatorname{Tr} \frac{\mathbf{R}_1 \cdot \mathbf{R}_2 e^{2iK_3 d}}{1 - \mathbf{R}_1 \cdot \mathbf{R}_2 e^{2iK_3 d}}$$



$$K_3 = \sqrt{\omega^2/c^2 - k_{\parallel}^2}$$

Reflection matrices (Fresnel formulas for isotropic media):

$$r^{\text{TM,TM}}(\omega, \mathbf{k}_{\parallel}) = \frac{\epsilon(\omega)K_3 - \sqrt{\epsilon(\omega)\mu(\omega)\omega^2/c^2 - k_{\parallel}^2}}{\epsilon(\omega)K_3 + \sqrt{\epsilon(\omega)\mu(\omega)\omega^2/c^2 - k_{\parallel}^2}}$$

$$r^{\mathrm{TE,TE}} = r^{\mathrm{TM,TM}}$$
 with $\epsilon \leftrightarrow \mu$

Relevant frequencies:

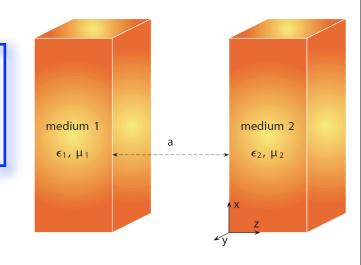
$$\begin{cases}
\epsilon(\omega) \xrightarrow{\omega \gg \Omega_p} 1 & \Rightarrow r^{p,p} \approx 0 \text{ (Transparent plates)} \\
\omega \gg c/d & \Rightarrow e^{2iK_3d} \approx 0 \text{ (Fast oscillations)}
\end{cases} \Rightarrow F \approx 0$$

$$0 \leq \omega \leq \min\{\Omega_p, c/d\}$$

$$0 \le \omega \le \min\{\Omega_p, c/d\}$$

Going to imaginary frequencies

$$\frac{F}{A} = 2\hbar \int_0^\infty \frac{d\xi}{2\pi} \int \frac{d^2 \mathbf{k}_{\parallel}}{(2\pi)^2} K_3 \text{Tr} \frac{\mathbf{R}_1 \cdot \mathbf{R}_2 e^{-2K_3 d}}{1 - \mathbf{R}_1 \cdot \mathbf{R}_2 e^{-2K_3 d}}$$



Kramers-Kronig (causality) relations:

$$\epsilon(i\xi) = 1 + \frac{2}{\pi} \int_0^\infty \frac{\omega \epsilon''(\omega)}{\omega^2 + \xi^2} d\omega \qquad \qquad \mu(i\xi) = 1 + \frac{2}{\pi} \int_0^\infty \frac{\omega \mu''(\omega)}{\omega^2 + \xi^2} d\omega$$

Dominant frequencies below the near-infrared/optical region of the EM spectrum (gaps d= 200-1000 nm)

The important message is that Casimir is a broad-band frequency phenomenon

The sign of the Casimir force

$$\frac{F}{A} = 2\hbar \int_0^\infty \frac{d\xi}{2\pi} \int \frac{d^2 \mathbf{k}_{\parallel}}{(2\pi)^2} K_3 \operatorname{Tr} \frac{\mathbf{R}_1 \cdot \mathbf{R}_2 e^{-2K_3 d}}{1 - \mathbf{R}_1 \cdot \mathbf{R}_2 e^{-2K_3 d}}$$

The sign of the force is directly connected to the sign of the product of the reflection coefficients on the two plates, evaluated at imaginary frequencies. As a rule of thumb, we have (p=TE,TM)

$$R_1^p(i\xi) \cdot R_2^p(i\xi) > 0 \ (\forall \ \xi \le c/d) \Rightarrow \text{Attraction}$$

 $R_1^p(i\xi) \cdot R_2^p(i\xi) < 0 \ (\forall \ \xi \le c/d) \Rightarrow \text{Repulsion}$

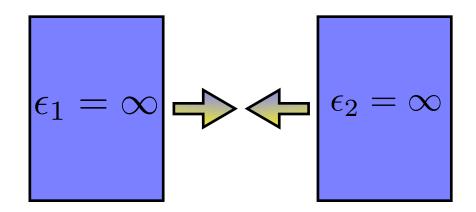
In terms of permittivities and permeabilities:

$$\begin{array}{ccc} \epsilon_a(i\xi)\gg\epsilon_b(i\xi) & & \longrightarrow & \text{Repulsion} \\ \mu_b(i\xi)\gg\mu_a(i\xi) & & & \end{array}$$

Ideal attractive limit

Casimir (1948)

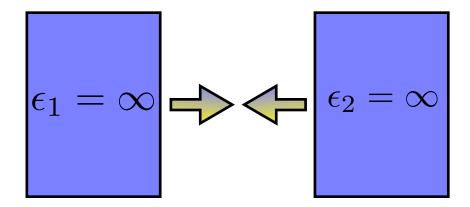
$$\frac{F}{A} = +\frac{\pi^2}{240} \frac{\hbar c}{d^4}$$



Ideal attractive limit

Casimir (1948)

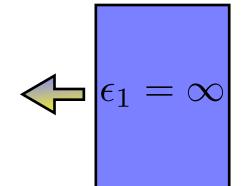
$$\frac{F}{A} = +\frac{\pi^2}{240} \; \frac{\hbar c}{d^4}$$

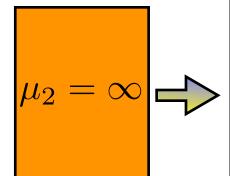


Ideal repulsive limit

Boyer (1974)

$$\frac{F}{A} = -\frac{7}{8} \frac{\pi^2}{240} \frac{\hbar c}{d^4}$$

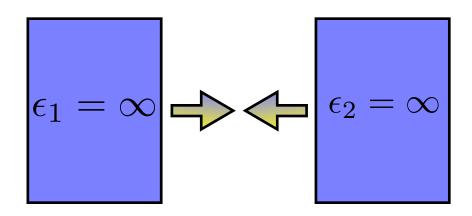




Ideal attractive limit

Casimir (1948)

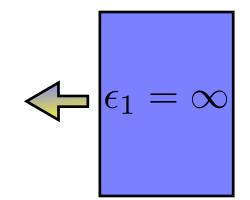
$$\frac{F}{A} = +\frac{\pi^2}{240} \frac{\hbar c}{d^4}$$

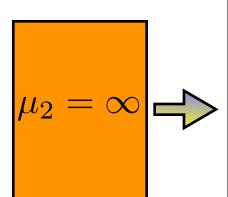


Ideal repulsive limit

Boyer (1974)

$$\frac{F}{A} = -\frac{7}{8} \frac{\pi^2}{240} \frac{\hbar c}{d^4}$$





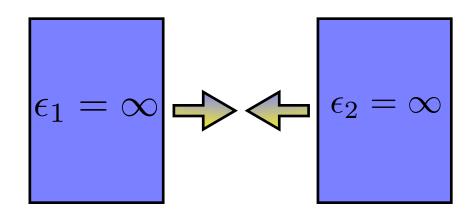
Real repulsive limit

Casimir repulsion is associated with strong electric-magnetic interactions. However, natural occurring materials do NOT have strong magnetic response in the optical region, i.e. $\mu=1$

Ideal attractive limit

Casimir (1948)

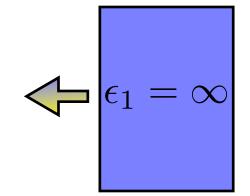
$$\frac{F}{A} = +\frac{\pi^2}{240} \frac{\hbar c}{d^4}$$

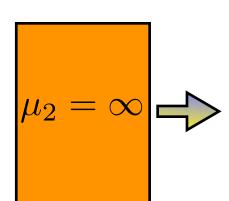


Ideal repulsive limit

Boyer (1974)

$$\frac{F}{A} = -\frac{7}{8} \frac{\pi^2}{240} \frac{\hbar c}{d^4}$$





Real repulsive limit

Casimir repulsion is associated with strong electric-magnetic interactions. However, natural occurring materials do NOT have strong magnetic response in the optical region, i.e. $\mu=1$

Metamaterials

Quantum levitation with MMs?

Business Travel Jobs Motoring Property

Physicists have 'solved' mystery of levitation - Telegraph

RSS 🖰 | Britain's No.1 quality newspaper website | Make us your homepage

Telegraph.co.uk

http://www.telegraph.co.uk/news/main.jhtml?xml=/news/2007/08/0...

Tuesday 4 September 2007

Google

"In theory the discovery could be used to levitate a person"

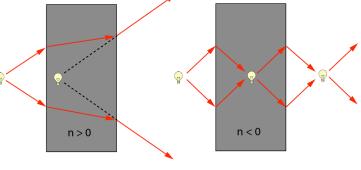
Metamaterials

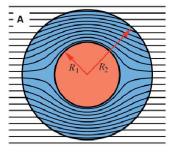
- Artificial structured composites with designer electromagnetic properties
- MMs are strongly anisotropic, dispersive, magneto-dielectric media.
- Perfect lens
- Cloaking

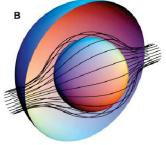
Negative refraction Veselago (1968), Smith et al (2000)

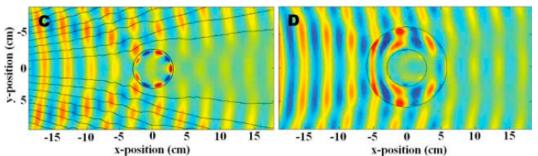
Pendry (2000)

Smith et al (2007)

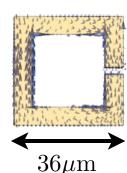


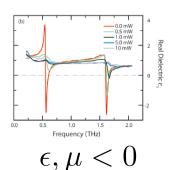




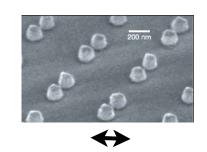


THz MMs: eg split ring resonators

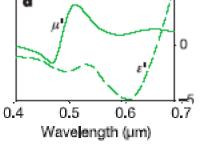




Optical MMs: eg nano-pillars



 $200\mathrm{nm}$



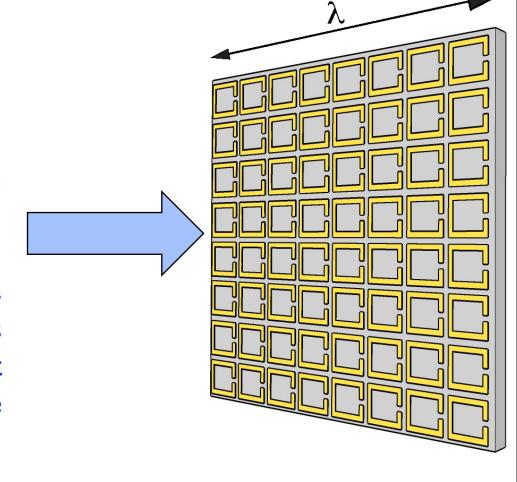
Effective medium approximation

We want to compute the Casimir force between a metallic plate and a MM. Let us assume a metallic plate in is reasonably well described by a Drude response

$$\epsilon_1(\omega) = 1 - \frac{\Omega_e^2}{\omega^2 + i\gamma_e\omega}$$
 $\mu_1 = 1$

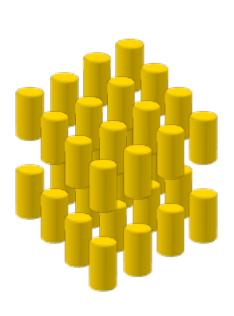
For the MM the optical response is not so simple.....

In the effective medium approximation (EMA) one describes the MM with an effective electric permittivity and an effective magnetic permeability. This is an approximation valid when the MM is probed at wavelengths much larger that the average distance between the constituent "particles" of the MM.

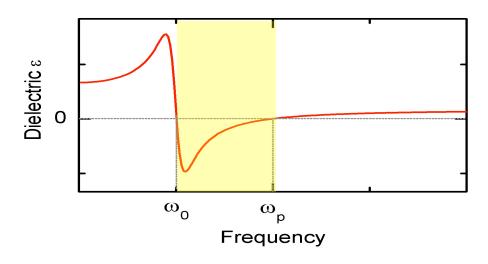


EMA: Electric response

Close to resonance, the optical response can be modeled by a Drude-Lorentz permittivity



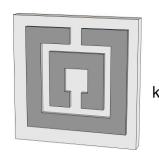
$$\varepsilon(\omega) = 1 - \frac{\omega_p^2 - \omega_0^2}{\omega^2 - \omega_0^2 + i\omega\Gamma}$$

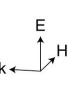


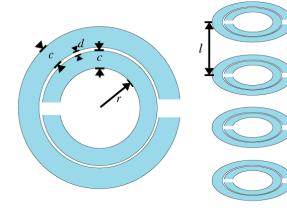
J.B. Pendry et al., Phys. Rev. Lett. 76, 4773 (1996).

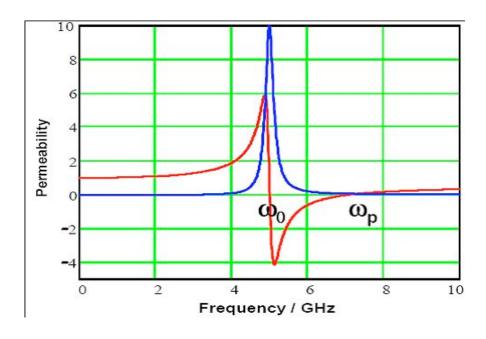
EMA: Magnetic response

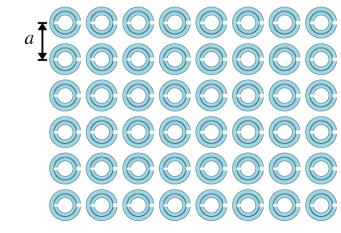
$$\mu_{eff} = 1 - \frac{\frac{\pi r^2}{a^2}}{1 + \frac{2\sigma i}{\omega r \mu_0} - \frac{3}{\pi^2 \mu_0 \omega^2 C r^3}}$$











J.B. Pendry et al., IEEE Trans. Microwave Tech. 47, 2075 (1999).

EMA: Drude-Lorentz responses

Close to the resonance, both $\epsilon(\omega)$ and $\mu(\omega)$ can be modeled by Drude-Lorentz formulas

$$\epsilon_{\alpha}(\omega) = 1 - \frac{\Omega_{E,\alpha}^2}{\omega^2 - \omega_{E,\alpha}^2 + i\Gamma_{E,\alpha}\omega}$$
$$\mu_{\alpha}(\omega) = 1 - \frac{\Omega_{M,\alpha}^2}{\omega^2 - \omega_{M,\alpha}^2 + i\Gamma_{M,\alpha}\omega}$$

Typical separations

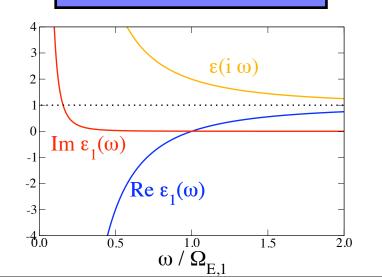
$$d = 200 - 1000 \text{ nm}$$

Infrared-optical frequencies

$$\Omega/2\pi = 5 \times 10^{14} \text{Hz}$$

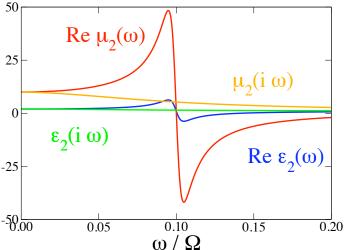
Drude metal (Au)

$$\Omega_E = 9.0 \; \mathrm{eV} \; \; \Gamma_E = 35 \; \mathrm{meV}$$



Metamaterial

Re
$$\epsilon_2(\omega) < 0$$
 Re $\mu_2(\omega) < 0$

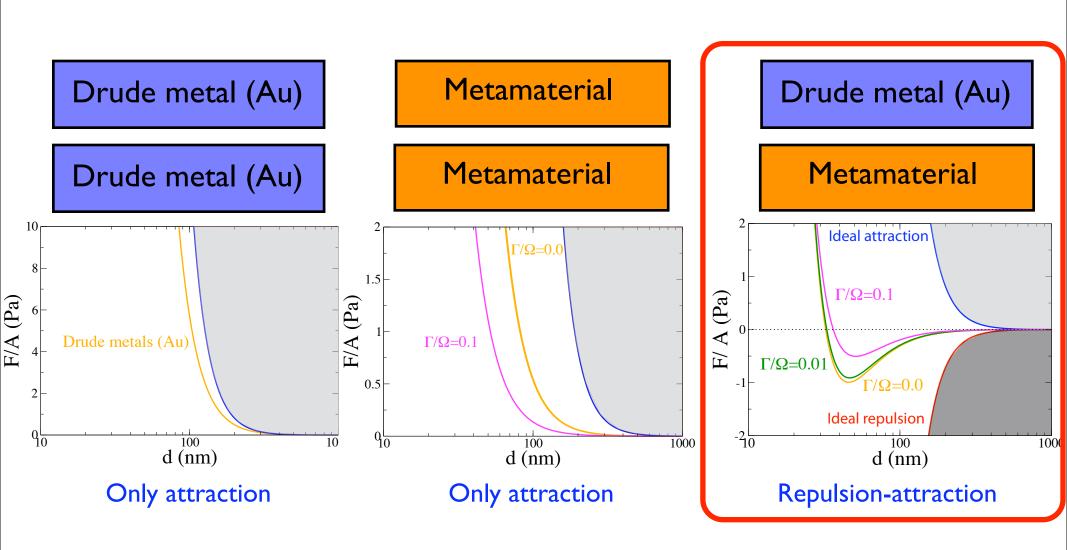


$$\Omega_{E,2}/\Omega = 0.1 \quad \Omega_{M,2}/\Omega = 0.3$$

$$\omega_{E,2}/\Omega = \omega_{M,2}/\Omega = 0.1$$

$$\Gamma_{E,2}/\Omega = \Gamma_{M,2}/\Omega = 0.01$$

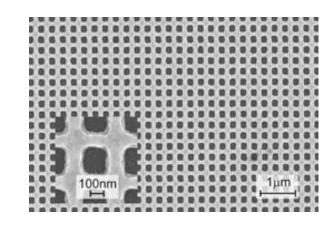
Attraction-repulsion crossover



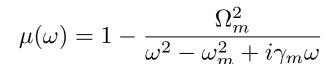
Drude background

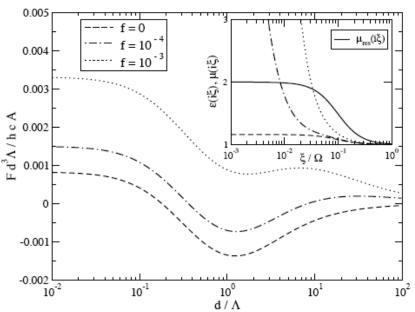
In some metallic-based MMs, there is a net conductivity due to the metallic structure, like the fishnet design on the right.

$$\epsilon(\omega) = 1 - f \frac{\Omega_D^2}{\omega^2 - i\omega\gamma_D} - (1 - f) \frac{\Omega_e^2}{\omega^2 - \omega_e^2 + i\gamma_e\omega}$$



$$f$$
: filling factor





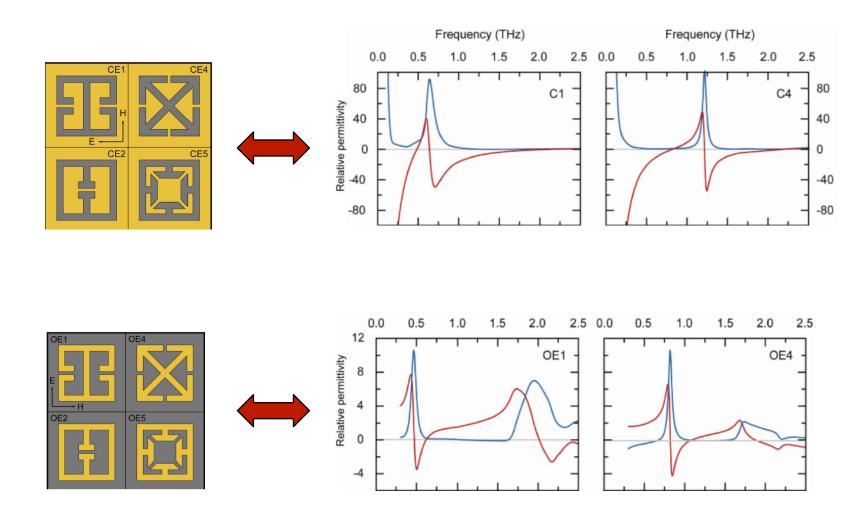
Rosa, DD, Milonni, PRL 2008

A Drude background is detrimental for Casimir force reduction or repulsion, since it results in an electric response much stronger than the magnetic one

$$\epsilon_2(i\xi) \gg \mu_2(i\xi)$$

Complementary SRRs + Drude

SRRs structures provide an opportunity to avoid the large Drude background, since they can be built in two natural complementary ways



Optical anisotropy

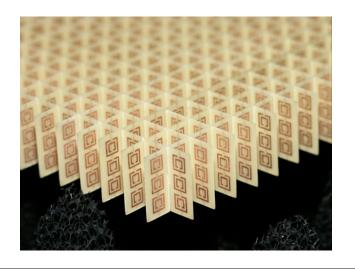
In an anisotropic medium, the constitutive relations between E, D, B, and H are more involved:

$$D = \epsilon \cdot E$$
 $H = \mu^{-1} \cdot B$

due to the tensorial nature of the permittivity and permeability

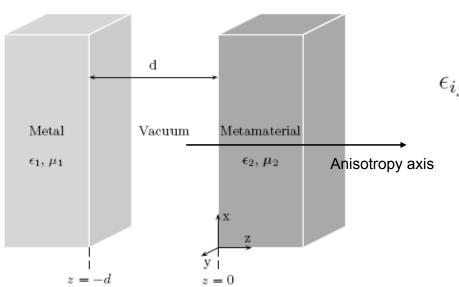
$$\epsilon = \begin{bmatrix} \epsilon_{11} & \epsilon_{12} & \epsilon_{13} \\ \epsilon_{21} & \epsilon_{22} & \epsilon_{23} \\ \epsilon_{31} & \epsilon_{32} & \epsilon_{33} \end{bmatrix} \qquad \mu = \begin{bmatrix} \mu_{11} & \mu_{12} & \mu_{13} \\ \mu_{21} & \mu_{22} & \mu_{23} \\ \mu_{31} & \mu_{32} & \mu_{33} \end{bmatrix}$$

due to the tensorial nature of the permittivity and permeability



Examples of uniaxial anisotropy in stacked MMs

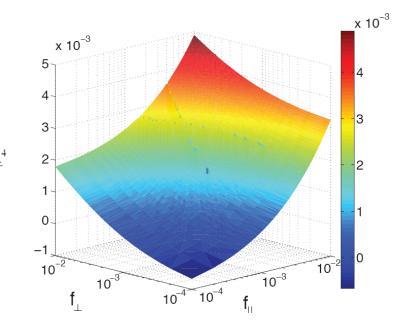
Anisotropy: Uniaxial MMs



$$\epsilon_{ij} = \begin{bmatrix} \epsilon_{xx} & 0 & 0 \\ 0 & \epsilon_{xx} & 0 \\ 0 & 0 & \epsilon_{zz} \end{bmatrix} \quad ; \quad \mu_{ij} = \begin{bmatrix} \mu_{xx} & 0 & 0 \\ 0 & \mu_{xx} & 0 \\ 0 & 0 & \mu_{zz} \end{bmatrix}$$

Anisotropy produces polarization mixing (non-diagonal reflection matrices)

$$\begin{split} \epsilon_{xx}(\omega) &= \epsilon_{yy}(\omega) = 1 - (1 - f_x) \frac{\Omega_{e,x}^2}{\omega^2 - \omega_{e,x}^2 + i \gamma_{e,x} \omega} - f_x \frac{\Omega_{D,x}^2}{\omega^2 + i \gamma_{D,x} \omega}, \\ \epsilon_{zz}(\omega) &= 1 - (1 - f_z) \frac{\Omega_{e,z}^2}{\omega^2 - \omega_{e,z}^2 + i \gamma_{e,z} \omega} - f_z \frac{\Omega_{D,z}^2}{\omega^2 + i \gamma_{D,z} \omega}, \\ \mu_{xx}(\omega) &= \mu_{yy}(\omega) = 1 - \frac{\Omega_{m,x}^2}{\omega^2 - \omega_{m,x}^2 + i \gamma_{m,x} \omega}, \\ \mu_{zz}(\omega) &= 1 - \frac{\Omega_{m,z}^2}{\omega^2 - \omega_{m,z}^2 + i \gamma_{m,z} \omega} \end{split}$$



Anisotropy does not help repulsion

(Rosa, DD, Milonni, PRA 2008)

EMA: correct model for μ

Drude-Lorentz for permeability is wrong. The correct expression that results in EMA from Maxwell's equations is

$$\mu_{\text{eff}}(\omega) = 1 - f \frac{\omega^2}{\omega^2 - \omega_m^2 + 2i\gamma_m\omega}$$

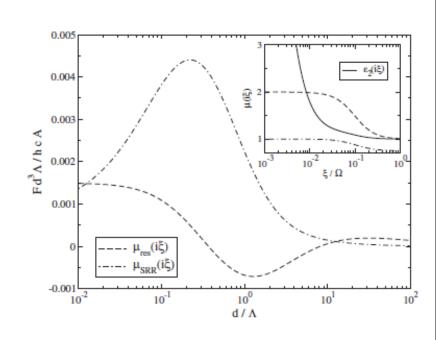
(Pendry 1999)

The appearance of the ω^2 factor in the numerator is very important:

Although close to the resonance this behaves in the same way as the Drude-Lorentz EMA permeability, it has a completely different low-frequency behavior

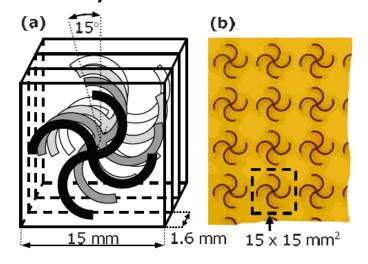
$$\mu_{\rm eff}(i\xi) < 1 < \epsilon_{\rm eff}(i\xi)$$

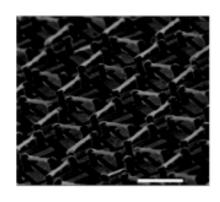
No Casimir repulsion!

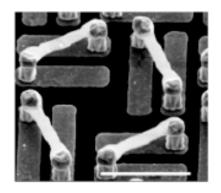


Other Casimir MMs: chirality

The chirality of a MM is defined by the chirality of its unit cell







In a chiral medium, the constitutive relations mix electric and magnetic fields

$$D(\mathbf{r}, \omega) = \epsilon(\omega) \mathbf{E}(\mathbf{r}, \omega) - i\kappa(\omega) \mathbf{H}(\mathbf{r}, \omega)$$
$$\mathbf{B}(\mathbf{r}, \omega) = i\kappa(\omega) \mathbf{E}(\mathbf{r}, \omega) + \mu(\omega) \mathbf{H}(\mathbf{r}, \omega)$$

dispersive chirality:
$$\kappa(\omega)=\frac{\omega_k\omega}{\omega^2-\omega_{\kappa R}^2+i\gamma_k\omega}$$

Repulsion and chiral MMs

In chiral MMs the reflection matrix is non-diagonal (mixing of E and H fields).

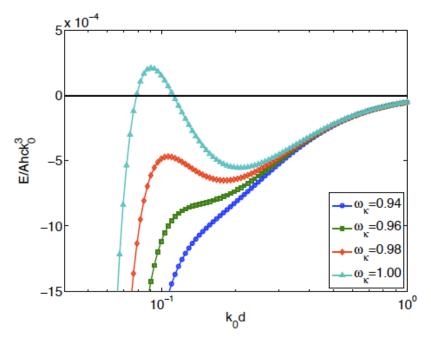
The integrand of the Casimir-Lifshitz force between two identical chiral MMs has the form:

$$F = \frac{(r_{ss}^2 + r_{pp}^2 - 2r_{sp}^2)e^{-2Kd} - 2(r_{sp}^2 + r_{ss}r_{pp})^2e^{-4Kd}}{1 - (r_{ss}^2 + r_{pp}^2 - 2r_{sp}^2)e^{-2Kd} + (r_{sp}^2 + r_{ss}r_{pp})^2e^{-4Kd}}$$

One might achieve repulsive Casimir forces with strong chirality (i.e., large values of r_{sp})

Same-chirality (SC) materials: repulsion

Opposite-chirality (OC) materials: repulsion

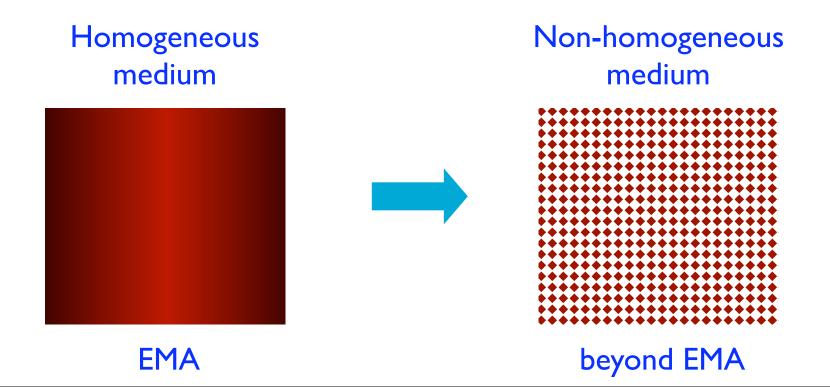


Soukoulis et al, PRL 2009

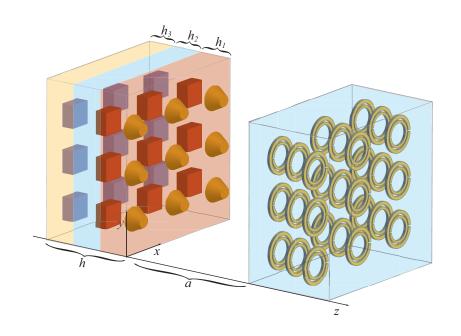
Beyond EMA

Everything discussed so far is based on the assumption that the effective medium approximation (EMA) holds. We recall that this amounts to treating the MM in the "long-wavelength approximation", i.e., field wavelengths much larger than the typical size of the unit cell of the MM.

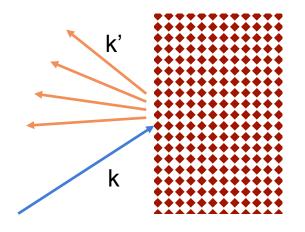
How to calculate Casimir forces when EMA does not hold? Can one trust predictions of Casimir repulsion with MMs based on EMA?



Exact method: Scattering theory Los Alamos



The Casimir force still may be described in terms of reflections (scattering theory)



Symbolically, we may write the Casimir energy as

$$\frac{E(d)}{A} = \hbar \int_0^\infty \frac{d\xi}{2\pi} \log \det \left[1 - \mathcal{R}_1 e^{-\mathcal{K}d} \mathcal{R}_2 e^{-\mathcal{K}d} \right]$$

where
$$\mathcal{R}_i \equiv \mathcal{R}_i(\mathbf{k}_{\parallel},\mathbf{k}_{\parallel}',p,p',i\xi)$$

Solving for the reflection matrix

The reflection matrix can be obtained with standard methods of numerical electromagnetism. One way is to solve Maxwell equations for the transverse fields

$$-ik\frac{\partial \mathbf{E}_t}{\partial z} = \nabla_t \left[\chi \hat{e}_3 \cdot \nabla \times \mathbf{H}_t \right] - k^2 \mu \hat{e}_3 \times \mathbf{H}_t$$
$$-ik\frac{\partial \mathbf{H}_t}{\partial z} = -\nabla_t \left[\zeta \hat{e}_3 \cdot \nabla \times \mathbf{E}_t \right] + k^2 \epsilon \hat{e}_3 \times \mathbf{E}_t$$

Assuming a two-dimensional periodic structure, we have

$$\mathbf{E}_{t}(x,y) = e^{i\mathbf{k}\cdot\mathbf{r}} \sum_{m,n} \mathcal{E}_{m,n} \exp\left[i\frac{2\pi n}{L_{x}}x + i\frac{2\pi m}{L_{y}}y\right]$$
$$\mathbf{H}_{t}(x,y) = e^{i\mathbf{k}\cdot\mathbf{r}} \sum_{m,n} \mathcal{H}_{m,n} \exp\left[i\frac{2\pi n}{L_{x}}x + i\frac{2\pi m}{L_{y}}y\right]$$

where

$$\epsilon(x,y) = \sum_{m,n} \epsilon_{m,n} \exp\left[i\frac{2\pi n}{L_x}x + i\frac{2\pi m}{L_y}y\right]$$
$$\mu(x,y) = \sum_{m,n} \mu_{m,n} \exp\left[i\frac{2\pi n}{L_x}x + i\frac{2\pi m}{L_y}y\right]$$

Exact reflection matrix

One can then write the equations for the transverse fields as

$$-ik\frac{\partial \Psi_{m'n'}}{\partial z} = \sum_{mn} H_{m'n',mn} \Psi_{mn}$$

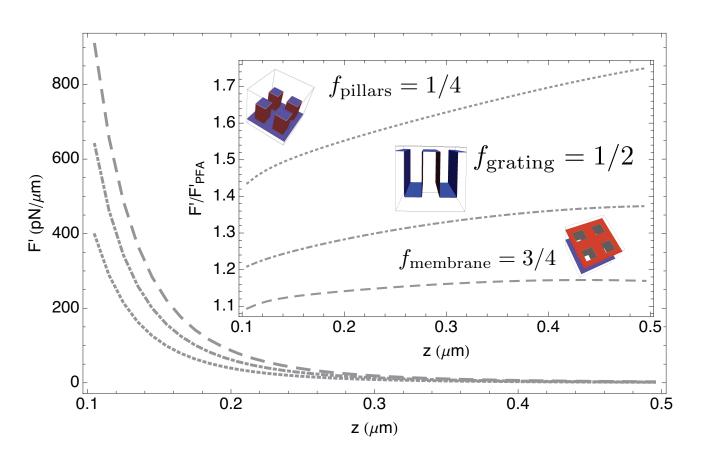
$$-ik\frac{\partial \Psi_{m'n'}}{\partial z} = \sum_{mn} H_{m'n',mn} \Psi_{mn} \qquad \Psi_{mn} = \begin{bmatrix} \mathcal{E}_{mn}^{x} \\ \mathcal{E}_{mn}^{y} \\ \mathcal{H}_{mn}^{x} \\ \mathcal{E}_{mn}^{y} \end{bmatrix} = \begin{bmatrix} \Psi_{mn}^{1} \\ \Psi_{mn}^{2} \\ \Psi_{mn}^{3} \\ \Psi_{mn}^{4} \end{bmatrix}$$

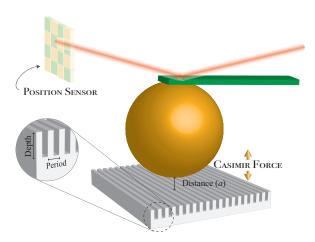
Here H is a complicated matrix, that encapsulated the coupling of modes in the periodic structure.

By numerically solving this equation and imposing the proper boundary conditions of the field on the vacuum-metamaterial interphase (RCWA or S-matrix techniques), one can find the reflection matrix of the MM.

2D periodic structures - finite T

Casimir force between a Au sphere and Si pillars/grating/membrane @ T=300 K





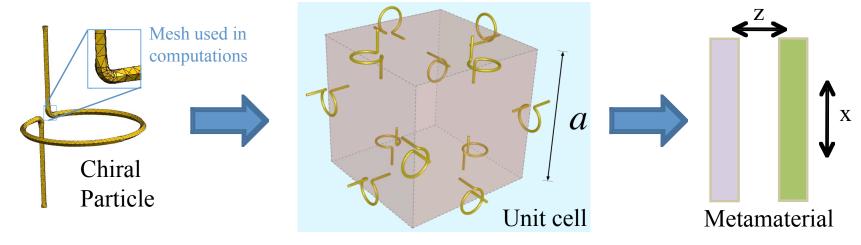
$$R = 50 \mu \text{m}$$

period = 400 nm
depth = 1070 nm

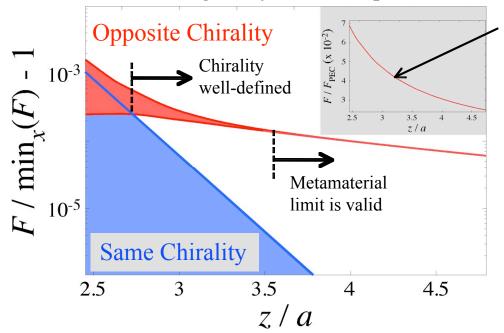
Davids, Intravaia, Rosa, DD, arXiv:1008.3580

Related techniques in 1D gratings at T=0K developed by Guérout, Lambrecht, Chan, et al. arXiv:1009.3487

Chiral metamaterials - T=0



Effect of inhomogeneity across displacements x



Total force relative to parallel metal plates

"repulsive" effect (force reduction) of chirality is one ten-thousandth of this!

Conclusion

In the regime where the chiral metamaterial limit is valid, the effect is **too small** to be observable.

Remarks: MMs and Casimir

- Metamaterials offer an interesting possibility for Casimir force manipulation: engineered optical response, (maybe) broadband, dynamic control.
- Several proposals for MM-based Casimir force use effective medium approximation. Their predictions have to be carefully checked since EMA breaks down for electromagnetic fluctuations with wavelengths comparable to metamaterial feature sizes.
- © Casimir repulsion in vacuum-separated metallic/dielectric metamaterial structures seems hard to achieve. It is certainly impossible in geometries that are effectively one-dimensional (Casimir stability considerations).

References

Casimir-Lifshitz theory and magneto-dielectric metamaterials

Henkel and Joulain, EPL **72**, 929 (2005)

Leonhardt and Philbin, NJP 9, 254 (2007)

da Rosa, DD, Milonni, PRL 100, 183602 (2008)

da Rosa, DD, Milonni, PRA **78**, 032117 (2008)

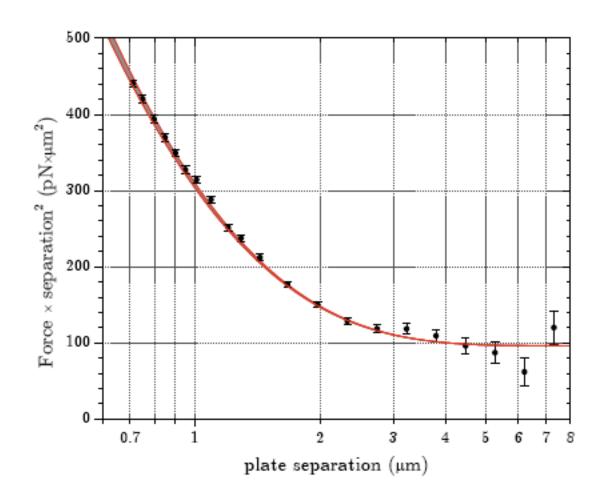
Numerical techniques for Casimir interactions with metamaterials

McCauley et al, PRB 82, 165108 (2010)

Davids, Intravaia, Rosa, DD, arXiv:1008.3580

New results (under review)

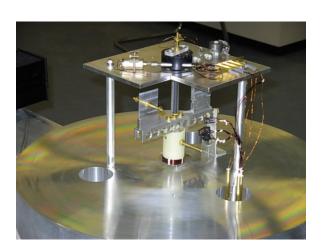
First observation of the thermal Casimir force



Sushkov (Yale), Kim (Seattle), DD (LANL), and Lamoreaux (Yale)

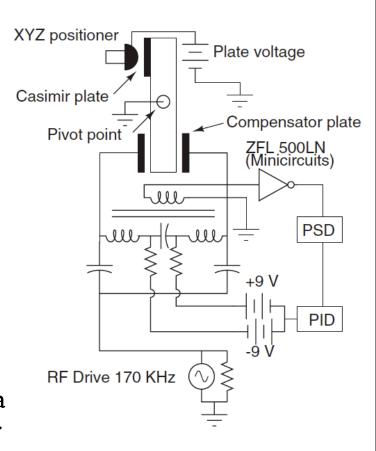
Torsional Pendulum Set-up

Upgrade of Lamoreaux's 1997 experiment



An imbalance in capacitance is amplified and sent to a phase sensitive detector (PSD), which generates error signals.

A proportional integro-differential (PID) controller provides a feedback correction voltage $S_{\rm PID}(d,V_a)$ to the compensator plates, restoring equilibrium.



$$F \propto (S_{\text{PID}} + 9V)^2 \approx (9V)^2 + 2S_{\text{PID}} \times 9V$$

The correction voltage is the physical observable, and it is proportional to the force between the Casimir plates

Typical Casimir Measurement

$$S_{\text{PID}}(d, V_a) = S_{\text{dc}}(d \to \infty) + S_a(d, V_a) + S_r(d)$$

force-free component of signal at large separations

electrostatic signal in response to an applied external voltage

residual signal due to distance-dependent forces, e.g. Casimir

The electrostatic signal between the spherical lens and the plate, in PFA ($d \ll R$), is

$$S_a(d, V_a) = \pi \epsilon_0 R(V_a - V_m)^2 / \beta d$$

 β force-voltage conversion factor

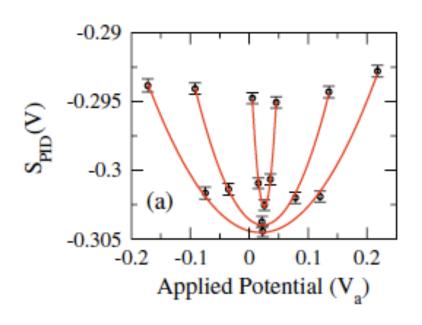
This signal is minimized ($S_a=0$) when $V_a=V_m$, and the electrostatic minimizing potential V_m is then defined to be the contact potential between the plates.

"Parabola" measurements

Calibration routine (lannuzzi et al, PNAS 04)

A range of plate voltages V_a is applied, and at a given nominal absolute distance the response is fitted to a parabola

$$S_{\text{PID}}(d, V_a) = S_0 + k(V_a - V_m)^2$$



Fitting parameters

$$k = k(d)$$
 \longrightarrow voltage-force calibration factor + absolute distance $V_m = V_m(d)$ \longrightarrow distance-dependent minimizing potential $S_m = S_m(d)$ \longrightarrow force residuals absolute distance.

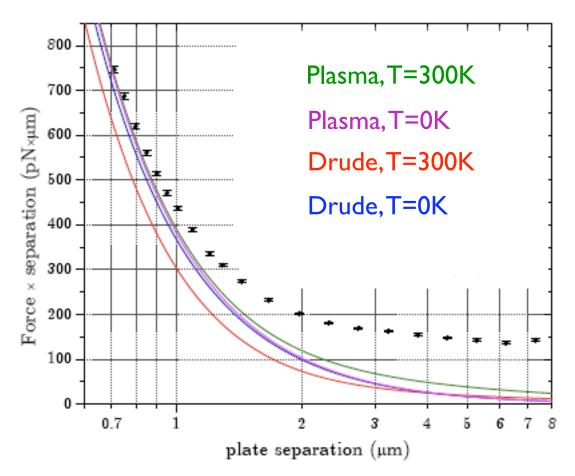
$$S_0 = S_0(d)$$
 force residuals: electrostatic + Casimir + non-Newtonian gravity +

This procedure is repeated at decremental distances, from 7 um down to 0.7 um, completing a single experimental run.

In the experiment $\,V_m=V_m(d)\,$ is almost constant (0.2 mV variation in the whole range)

Force Residuals

Residuals from Coulomb force obtained from the value of the PID signal at the minima of each parabola,



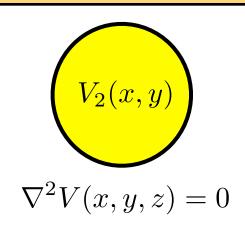
In the experiment, these force residuals are <u>too large</u> to be explained just by the Casimir-Lifshitz force between the Au plates.

Electrostatic Patch Effects

Sphere-plane geometry:

To compute the patch effect in the sphere-plane configuration we use PFA for the curvature effect $(d \ll R)$ but leave kd arbitrary

$$F_{sp}(d) = 2\pi R \langle U_{pp}(d) \rangle = \frac{\epsilon_0 R}{16} \int_0^\infty dk \, \frac{k^2 e^{-kd}}{\sinh(kd)} \left[C_{1,k} + C_{2,k} \right]$$



$$V(z=0) = V_1(x,y)$$

Different models to describe surface potential fluctuations:

$$C_{1,k} = C_{2,k} = V_0^2 \text{ for } k_{\min} < k < k_{\max}$$
$$F_{sp} = \frac{4\pi\epsilon_0 V_{\text{rms}}^2 R}{k_{\text{max}}^2 - k_{\text{min}}^2} \int_{k_{\min}}^{k_{\max}} dk \frac{k^2 e^{-kd}}{\sinh(kd)}$$

$$\Re(r) = \begin{cases} V_0^2 & \text{for } r \leq \lambda, \\ 0 & \text{for } r > \lambda. \end{cases}$$
$$F_{sp} = 2\pi\epsilon_0 R \int_0^\infty du \ u \frac{J_1(u)}{e^{2ud/\lambda} - 1}$$

In the limit of large patches $(kd \ll 1)$:

$$F_{sp}(d) = \pi \epsilon_0 R \frac{V_{\rm rms}^2}{d}$$

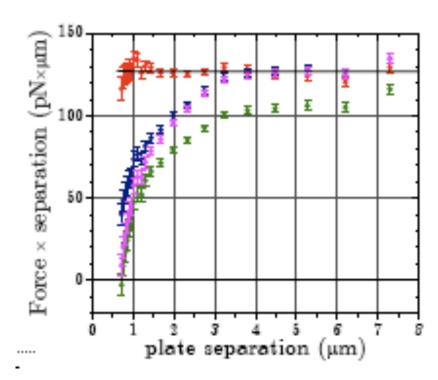
Understanding elec. residuals

We fit the data for the residual force at the minimizing potential with a force of equal to Casimir + patch effect

$$F_r(d) = F_C(d) + \pi \epsilon_0 R \frac{V_{\text{rms}}^2}{d}$$

Drude, T=300K

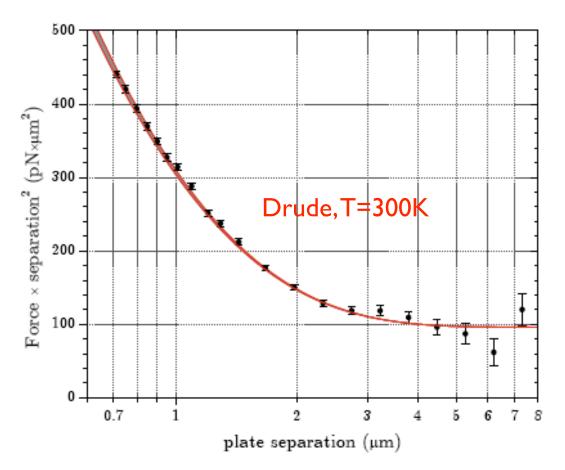
Drude, T=0K



Plasma, T=300K

Plasma, T=0K

Thermal Casimir force



$$F_C^{(T)}(\text{Drude}) = \frac{\xi(3)}{8} \frac{Rk_BT}{d^2}$$

Quality of fits:

Drude, T=300K

Plasma, T=300K

Drude, T=0K

Plasma, T=0K

$\chi^2_{ m red}$	$V_{\rm rms}({ m m}V)$
-------------------	------------------------

1.04	5.4
32	3.0
23	4.0
43	3.6

Remarks:

- Experiment rules out the plasma model in the separation range 0.7um to 7um, and confirms the Drude model
- Thermal correction to the Casimir force demonstrated.

Electrostatic residuals modeled as due to large electrostatic patches

$$F_r^{\mathrm{patches}} \propto R \frac{V_{\mathrm{rms}}^2}{d} \qquad (\lambda_{\mathrm{P}} \gg d)$$

Would be interesting to do Kelvin probe microscopy of the used samples. Must detect potential variations on the 0.1 mV range.